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INTRCDUCTION

This paper derlves exact and asymptotic one-dimensional
formulas for the probabllity that the astronauts will be able to
find a good touchdown interval (i.e., one free of large obstacles
or craters which might damage the LM) during the terminal portion
of the LM descent. The formulas are expressed as functions of
the length of the accessible interval that can be searched and of
the average density of obstacles. The obstacles are assumed to
be randomly distributed according to a Poisson distribution. Size
of the obstacles 1s not consldered, i.e., these are assumed to be
points on the search interval.

In order to properly interpret the results in terms of
the probability of finding an obstacle-free touchdown area, when
the accessible footprint area and average obstacle density has
been specified, it is necessary to extend the solution to two
dimensions. It i1s hoped to treat this in a subsequent paper.

The mathematical formulation of the problem is given in
section I. Section II derives the basic functional equation, the
exact solution to which is presented in section III and the
asymptotic solution in section IV. The required size of the
accessible interval vs. obstacle density, for various specified
levels of confidence, 1s plotted in Figure 3. Appendix B presents
a mathematical proof that the required probability can be expressed
as an infinite sum of the residues at the poles of the Laplace
transform. The poles are discussed in Appendix A.
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I. FORMULATION OF PROBLEM

Let H be the length of the (maximum) search interval, and
%2 the subinterval length required to be obstacle-free. The obsta-
cles are assumed to be Poisson distributed with density parameter i,
l.e., A 1s the expected number of obstacles per unit length. As is
well known, the Poilsson distribution implies that the probability
that a single obstacle appears in the infinitesimal length ds 1s
Ads, and the probability of multiple obstacles appearing in ds is
negligible (of higher order). Within any finite interval of length
s, the probability of finding r obstacles 1is

(1) Prob(r) = e *S(xs)T/r!

It is required to determine the probability Q(H) that
every interval of length & within the search interval (0,H)
contains at least one obstacle. 1-Q(H) is then the probability
that at least one obstacle-free interval of length % exists.

Instead of treating H as fixed, it will be convenient
to view the obstacles as arisling sequentially as the search in-
terval is traversed. This is similar to the approach adopted in
study of waiting time processes. From this point of view, the
Poisson distribution of events goes over into the exponential
"waiting distance" distribution with probability density

(2) £(s) = re”*S s > 0

The corresponding cumulative probability that the waiting dis-

-8

tance is less than s 1s l-e Hence, when H=% the probability

q(say) that the interval (0,2) is not obstacle-free is

(3) q=1-c¢e
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The boundary conditions for the problem which, loosely
speaklng, serve to deflne the edge effects will be given by

(4) QH) =qy , 0 <H<z

Ordinarily, one would take q0=l, since for 2>H one cannot know
that the interval (0,2) will be free of obstacles. However,
other interpretations are possible, e.g., if Q(H) is considered
to include the subsequent action of aborting or of attempting a
landing anyway.

One can obtain a useful simplification through the
transformation:

H » H/2
(5)
AL > A

This is equivalent to assuming 2=1, so that H is measured in
units of the subinterval length &, and A becomes expected number
of obstacles in 2.

The problem formulated above can be considered as the
continuous analog of the discrete problem (Feller, Ref. 1,
pp. 260-261) of finding the probability of no success run of
length r in n independent trials, where p is the probability

of success on any single trial. The correspondence is given

by

p = 1l-ids
n = H/ds
r = &/ds
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In Section IV, Feller's asymptotic solution to the discrete
problem is extended to the continuous case.

II. DERIVATION OF FUNCTIONAL EQUATION

Consider the event that there i1s no obstacle-free
subinterval of length 1 in (0,H). If in the first unit interval
an obstacle occurs at s(0<s<l), then there must be no obstacle-
free unit length interval 1n the remaining search interval of
length H-s. Thils observation leads to the followlng integral
equation which describes the recursive nature of Q(H).

1
(6) Q(H) = J( Q(H-s)re *5ds
0
H
= e'xH[ at)rertar H > 1
H-1

The boundary condition for (6) is (cf. (4))

(7) Q(H) = qq4 0 <H<1

It is easy to see that Q(H) is continuous for H>1l. For H=1, we
define

(8) Q(1l) = Q(1+0) = qy
It then follows from (6) that

(9) q; = qO(l - e-l)




BELLCOMM, INC. -5-

It will be shown below that Q(H) is differentiable for H#$l,2.
(In these exceptional cases we define Q'(l) = Q'(140), and
Q'(2) = Q'(240).) Equation (6) then implies that

1
(10) Q'(H) = jr Q' (H-s)re"*Sas H>1
0
Integrating by parts glves
1
Q'(H) = - Q(H-1)re~? + Q(H)A = 2 jf Q(H-s)re~*Sas
0

By (6), the integral on the right is simply Q(H), so that (10)
leads to the following difference-differential equation

(11) Q'(H) = b Q(H-1) , H>1, H#%$2
where
(12) b = - re”?

Equation (11) is solved in the next section, treated
as a formal mathematical problem devold of its probability
interpretation. The solution is expressed as a function of
arbitrary boundary parameters Qg and a; in (7) and (8), and
of the parameter b.

IIT. EXACT SOLUTION

Integrating (11) between the limits 1 and H gives

H
Q(l) + b j' Q(s-1)ds
1

H-1
q + D jr Q(s)ds , H>1
0

(13) Q(H)
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Thus Q(H) can be determined recursively for successive unit
intervals. For example,

0 <H<1l: QH)=q
1 <H«<2: Q(H) = q; + bq,(H-1)
(14) 1 H-1
2 <H <3 Q(H) = q; +D Jr qods + b /ﬁ [ql+bqo(s-l)]ds
0 <1
b2 2
= q; + bqO + bql(H-2) + > qO(H-2)

In general, form < H <m + 1, Q(H) is easily seen, by induction,
to be a polynomial of degree m in H-m, i.e.,

m
(15) Q(H) = Z amn(H—m)n m= 0,1,+°-

n=0

The following notation will simplify the derivation

of the coefficients amn' Let

where m=[H], the largest integer < H. We define also

m
(16) Q,(h) = Q(H) = Z amnhrl , m=0,1,+++ , 0 <h <1
n=0
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In particular,

(17) Qm(O) = Q(m) 2 q = a

m mo > m:o,l,oo'

Since Q(H) is continuous for H > 1,

(18) Qu1(1) = Q (0) =q = a

m mo > m=2’3’.o-

Setting h=1 in (16) with m = m-1 gives

(19) 9y = 8po = zi: am--l,n

The functional equation (11) can now be written
1
(20) Qm(h) = me_l(h)
the boundary conditions being

[}
Q
o

Ql(O) = qy

Integrating (20) between 0 and h gives
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h
(21) Qm(h) = Qm(O) + b J( Qm_l(h)dh
0
h hy hm—l
= Qm(0)+bf dh, Qm_l(0)+bf dh,|Q,_,(0)+«« 4D dh_Q,(0)
0 0 0
m
_ (bn)"
- j{: U-n(®)
n=0
or
YEL
- (bh)™
(22) Q) = ) ap =y
n=0
Setting h=1 gives, from (18)
m
ph
(23) qm+l = qm_n Fl—! R m=l’2,...
n=0

Also, substituting (16) into (21) and equating powers of h
gives

(24) 4mn © am—n,n-l

il
o

n, . _ n
b /n! _n b /n!

The recursive relations, (19) and (24), imply that

a., can be computed using the scheme illustrated by the matrix
h

(25) on the following page. The O-t_i-ll entry in the mE— row, namely
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A, = o is obtained by summing all elements in the preceding
row (equation (19)). The ntl entry in the n row is obtained

by multiplying the preceding adjacent (left upper) dlagonal
element by b/n (equation (24)), or by multiplying the oth
element belonging to the diagonal by bn/n! Note that the terms
in the main and in the first off-diagonal are identical except

for the multiplier coefficient, dgy Or qy, respectively.

Qm(h) can then be determined either from (16) by
multiplying successive elements in the mE-rl row by hn, or from
(22) by multiplying successive elements in the 01:-—lrl column by
(bh)"/n!

An explicit formula can be derived for the
this purpose, in order to emphasize the dependence of q, on

the parameters dgs 47> b we write a, = qm(b;qo,ql).
Equation (23) is then written

m

n

b
(26) Ay (P3Q4597) = j{: Uy (P390597) 7T
n=0

We observe from the matrix (25) that the polynomials q, are
linear in dp and qq- In fact,

(27) q,(b3;1,1) = q ,,(b30,1)

4y (P3a4,a7) = q(b3a3,a94) + q,(b30,a;-94)

(28) ag * 9,(P31,1) + (q3-94) q;(b;0,1) =

Ay * ey (P30,1) + (a;-94) q;(b30,1)
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For simplicity we write

qm(bio,l) = qm(b)

We have then the following lemma.

Lemma: Let

m
ph

(29a) Qpeq (B) = ap,_, () =7 , m= 1,20
n=0

Then
m

- (m—n) _

(29) Qpyp (P) = j{: , m= 0,1,e¢»

n=

Proof: The proof is by induction. For m=1, the right hand sides
of (29) and (29a) are 1. (Equation (29) holds also for m=0 if
the convention OO=1 is adopted.) Suppose (29) holds for m<k.
Then
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1 k /k—"i \
N n s J n
oY o N [T (eneg)d 3] p
Aeap(P) = a0 oy = /. 31 o nt
n=0 n=0 \ j=0
X k=n k k
N N (k=n-g)? ey Voo Gen)tTh g
- 7ol /. nT{i=a)T =
n=0 J=0 =0 1i=n
K 1 K
) D e (re-1)t 1
n!(i-n') - it

[N
[}
o

n=

o
[N
|1}
(@]

This proves the lemma.

Substituting (29) into (28) gives the final solution

n

iy
) =
= n n b _
(30) Que1 = 2 [qo(m-n+l) + (ql~q0)(m—n) —E o7 m=1,2,-
n=0

An alternative derivation of (30) is through the use of
generating functions. Let

(31) F(z)

[11]
™
E»Q

S

Multiplying (23) by zm and summing from 1 to « gives

[ =] m
e

- _ n
m _ K» b m
(32) jiﬂ In+12 ~ 9-n nT 2

m=1 m=1 n=0

The left hand side of (32) is equal to

2 (F(z) - qq - q12)
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while the right hand side, after interchanging the order of
summation, is

\ m-n (bz)n _ bz
- qq + Z{: S qy_pn Y q0 + F(z) - e

Equating these gives

Ag + (a3~-q4)z
bz

(33) F(z) =

1l - ze

Expanding (33) into a power series in z gives for q,, the
coefficient of zm, precisely the formula (30).

IV. ASYMPTOTIC SOLUTION FOR Q(H)

In this final section, we treat only the special case

(cf. sections I and II) of q,=1, q; = 1 - ™%, b = - ae™*,
Equation (30) then specializes to
m
_ n -A n (-re
(34) Upyy = ZE: [‘m—n+l) - e " (m-n) ] S
=0

and equation (33) becomes

-
(35) F(z) = —>—%8
1 - ge Z2€
- N(z)
- D(z)

where N(+) represents the numerator of F(z) and D(+) the demoninator.
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A formula for q, can be derived in terms of the re-
sidues of the poles of F(z), where z is now considered to lie
in the complex plane. It 1s shown in Appendix B that Feller's
formula (reference 1, p. 258, equation (4.8)) can be extended
to the continuous case. Using only the smallest pole (in
absolute value) then provides an asymptotic approximation for
large H. More specifically, let z0 be the smallest root (in
absolute value) of the denominator of F(z) in (35). Then,
asymptotically,

N(z.)
(36) q N 0 7 —(m+l)

where the sign ~ indicates that the ratio of the two sides
tends to unity. Z is in fact the unique real positive
solution of the equation D(z) = 0, i.e., of

(37) zg = e = e

(The root z0=ex is excluded, since it is not a pole of F(z).)
For a#1, Zg

smallest in absolute value among all complex roots (see

can be seen to be a simple root and is also the
Appendix A.) Now

' bz0 l+bzO
(38) D (ZO) = -e (l+bzo) = - _EE__

Substituting (38) into (36) gives then

- l-zoe_x
(39) a, v Zp ¢ —

l—zoxé—l
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The asymptotic expression (39) actually holds for non-
integral values of H as well. This can be seen by considering
the Laplace transform for Q(H). The analysis is similar to that
for the generating function F(z). Let

fw

(40) s(u) = j Qi) e WHay
0

Multiplying equation (11) by e—uH, integrating between 1 and «,
and then using integration by parts, gives

- qle"u + up(u) - qO(l—e_u) = be "¢ (u)

Substituting for the parameters in terms of A, and defining

for simplicity v = -u and ¢(-v) = p(v), gilves
-V -
(41) V) = S
re " - ve
Let v, be the unique real root (#1) of the equation
Vo -2
(42) v.e = Ae

If A>1, then vo<1; while if X<1l, then v0>l. The asymptotic

formula analogous to (36) then becomes (where N(+) and D(-)
now refer to (41)):
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-v.H N(v.)
(43) QH) v - e O . 0

D'(vo)

or

-voH 1 - VO/A
(44) Q(H) ~ e . T N for A + 1
0

v

Note that z, = e ©

0 so that (44) is identical with (39) when H=m.

When A=1, (41) can be written as

B} - v-1 , (v-1
v-1 1+ + :
(45) bv) = I — = - ! 3!

e -V v-1 (v—l)2

Hence V0=l is seen to be a simple pole, and is in addition the
smallest root in absolute value of the denominator (see Appendix A).
Since from (45) D'(1) = 1/2 and N(1) = 1, equation (43) becomes

(46) Q(H) ~ 2 H for » = 1

s

The solution of (42) can be obtained using the following
iteration:

47 v = 2e e B
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This converges only for A>1 and initial value vl<A. When 1 1is
large, two iterations starting with vl=0 results in a fairly

good approximation for Vg namely

-
(48) vy ® re Aehe

Newton's method is somewhat more efficient and leads to the
following iteration

(49) Vot S nv . aete B

1 - e "e

This converges for A 2 1, but the convergence is more rapid for

X>1. In this case the starting value should satisfy v, < A - 2n 2.

1
For A<l a simpler and more rapid iteration than (49) is

(50) Vol = A - Rnd 4 anvy

with vi>A. The corresponding Newton iteration is

v
_ n
(51) Vorl = v -1 [» = an X -1+ 2nv ]

This also converges for A 2 1, but is more efficient for A<l with

v, > 1.

1

It is convenient to re-write equations (44) and (46)
in the following form, where the solution Vo of (42) is now
written as v(1):
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(52) QH) ~ [1 + K(x)Je~V(MH
where
1- ()
X ‘T X 6e) for A # 1
(53) K(x) =
1 for » = 1

Figure 1 plots v(x) and K(A) on semilog paper. The curves are
actually slightly S-shaped with asymptotic slope of -1 (on a
natural-log ordinate scale).

Figure 2 plots Q(H) vs. H for various A and compares
the exact solution given by (22) and (34) with the asymptotic
solution given by (52). It can be seen that the approximation
is excellent for H > 1.5, even for small A. Although we have
not proved this property, it appears that for integral H, the
asymptotic formula for A constitutes an upper bound of all m.

In order to obtain equiprobability (or confidence)
contours of (required) H vs. A, we set P=1-Q and H=Hp. Solving

equation (52) for H_ gives approximately

P

1 1+K())
(54) Hp * v00y 0 TIop

Figure 3 plots (54) for P = .50, .90, .95, .99 and .999. The
portion of the curves for small A have been determined from the

exact solutions plotted in Figure 2.

As was noted in section I, H can be interpreted as
the random waiting interval until an obstacle~free unit interval
arises. 1-Q(H) is then the cumulative probability distribution,
fhe derivative of which yields the probability density function
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for waiting intervals.¥ The mean waiting time and variance 1s
easily determined from the Laplace transform (41). In fact,
using well known formulas,

1 - e
(55) E(H) = $(0) = =—=—
Ae
= ' 2 _ 1 2 1
(56) V(H) = 2¢'(0) - 9°(0) = ——__;_5 - —5 - =
(Ae_ ) e A

It is of interest to compare these results with the
approximate distribution (represented hereafter by the symbol Yy,
For illustrative purposes, we restrict attention to the case of
Ax=1. 1In order that Q(H) represent a cumulative distribution, it
is necessary that Q(0)=1. More specifically, equation (46) is
modified for H<1l to give

N 1 for 0 < H <1
QtH) =
2e™®  for H > 1
Then
" w'\;
E(H) = [ Q(H)AH = 142/e = 1.736
70
n foo N '\:2 2
V(H) = 2 | HQ(H)dH - E“(H) = U4(e-1)/e” = .931
JO

¥To obtain the exact probability density function in the
manner of the recursive scheme (25), the 0th column should be
eliminated and the nth column multiplied by n.
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The exact values, obtalned by substituting A=1 into (55) and
(56), are

E(H) e - 1 1.718

V(H)

e - 2e - 1 = ,9525
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APPENDIX A

POLES OF THE LAPLACE TRANSFORM OF Q(H)

From equation (41) for y(v) (which is equivalent to
the usual Laplace transform ¢(u) defined by (40)) the poles
consist of the solutions of equation (42):

(A1) re ™ - ve ™V = g

The single real solution (#i) 1is vy and the complex solutions
can be written as

(A2) v =x+ 1y
where x and y are real and y$0. Substituting (A2) into (Al) gives
(A3) re - (x+iy)e X ™Y = o

Separating into real and imaginary parts yields the two equations

(AL) R = re”? - e ¥(x cos y+ysiny) =0

(AS) I

e ®(x siny - y cos y) = 0

These equations imply

(A6) X = ycoty
(AT) re ™ = e ¥ x secy
(A8) =e X xescy

(A1) and (A7) imply that the complex poles are unchanged if Vo
and A are interchanged. Moreover, (A6) and (A8) show that if
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x+ly 1s a pole then so also is x-1y. Hence, we can assume here-
after that y>0. (A8) then implies that csc y>0, so that y is
either in the first or second quadrants. Actually, only the
first quadrant is allowable. First note that x is positive since

(A9) X =X -2nXx+n(ycscy)>xr=-2nir>1

Equation (A7) now implies that sec y>0 so that y cannot be in
the second quadrant. Moreover, (A9) can be sharpened to

(A10) X > max (A,vo)

since, by (A6), (A8), and (Al),

X - n X y cot y - an(y cot y) > y cot y - an(y csc y) =

A = tn XA = vV

O—Q,I’IV

0

(A10) then follows from (A9). Hence, v
absolute value.

0 is the smallest pole in

The complex poles can be represented as vn=xn+iyn, where
t
(A11) y, = 2In + y, , n=11, 2, s
1
(Al12) 0 <y, < n/2

There is no solution for n=0, since (A6) would then imply that

]
xo=yé cot yé<l which contradicts (A9). Xn and y, are obtained

from (A8) and (A6) as the solution of the equations
] 1] L 1
(A13) (2nn+yn)cot ¥, 2n[(2nn+yn)csc yn] = ) - n A

1 |
(A1lb) X, = (2Hn+yn)cot Y



Equation (Al3) implies that as n +

(A15) 2im y; =

N

For large n, equations (A13)-(Al5) then imply that
(A16) X, v A - n ot 2n(2n+%)n

Figure Bl shows the asymptotic location of the poles, corre-
sponding to (Al5) and (Al6), for A = 1.5.

A more accurate estimate of the poles can be obtained
using an approximation derived from a first order expansion of
(Al13) about 0n/2. Letting

1
(Al7) Zn = H/2 - yn
then
' A-2n A+2n(2n+%)n
(A18) z, = -
(2n+§)n
Also,
!
z |
(A19) X = A - n A + 2n(2n+%)n + 2n{l - —~—£i—— - 2n cos z,
n (2n+§)II
] 12
Z Z
(20) = A - 4n A + zn(2n+%)n - ___ET__ + _%_
(2n+§) I

For A=1.5 and n=1, the exact solution from (Al3) and (AlY4) is
zi=.404, xl=3.187. The approximate solution from (Al8) and (A20)
1

is zl=.402, xl=3.185. The asymptotic solution (Al6) gives xl=3.156.
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APPENDIX B

PROOF OF ASYMPTOTIC FORMULA FOR Q(H)

Since Q(H) is integrable, i.e., EH exists, and has

everywhere right and left sided derivatives, the Laplace trans-
form can be inverted to give

+1Ry
(B1) Q) = 2 L f ey (v)av
¥ -1iR,

At points of discontinuity (H=0,1), Q(H) = %[Q(H+O) + Q(H-0)].

The integral in (Bl) can be evaluated by contour
integration. Using the rectangular contour shown in Figure B1,
with boundary Cl’ 02, C3, CM’ it is well known that, for the
2n+l poles enclosed within the boundary

n
(B2) f + f + f + f = 21 Z Py
Cl C2 C3 Cu -n

Each integral on the left is the same as in (Bl). I the
residue at the pole v, is given by (cf. equation (44))

-viH 1-vi/x

(B3) p; = € ¢
i l—vi

We will show that as n +

(B4) 2im [ = gim f = limf =0
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Appendix B

Then, since 2im J[- corresponds to the integral in (Bl), it will
1

) o

-— 00

follow that

(B5) Q(H)

. - - _ 1
) , 2 z: . x;H x. A)(xi l)cos yiH+(A l)yi sin y.H
A
1

2 2
(Xi-l) yi

Moreover, since A 1s the pole with smallest absolute value, then
asymptotically for large H, it is easy to see that

(B6) Q(H) ~ Py

The sides of the rectangle in Figure Bl are taken such
that

R = R = (2n+1)n
n Yn

] 1"
In addition 02 is subdivided into C2 and C2, with the length of
1]

02 given by

1
RX = gn en(2n+l)0
n

To show that 2im ‘/, = 0 it suffices to show that
1
Co
t
For sufficiently large n, since OixiRX
: n

y(v) > 0 on C;.




BELLCOMM, INC. -

_A_pppnd'i X B

-Xx-1R
ve V _ ae M (x+iR_ e A o\ x +R2 e X
n In
1
_Ry
n -x _ (2n+l)n -
z Ryne - e E en(2n+1l)n re
. A -V
Since |e -e < 2, it follows that
-\ —v|
e " - e
v (v)| = -
ve Vore™?|
1"
For C,, equations (A4) and (A5) with y=(2n+l)1 give
re ™t - ve_v‘ = [ae™ + xe™¥ + 1(en+l)ne™*| > ae™?

uniformly in n. Then

(2n+1)n
< 2 '
n| T e
C en gn(2n+l)n

2

A

- 2 [(2n(2n+l)n)—H - e'(2n+1)HH]

Hre™

so that 2£im J[. = 0. Hence, f2im jf
11

C

In similar fashion
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For C3, with -(2n+l)n < y < (2n+l1)n and RX = (2n+l)m,
then for sufficiently large n n

uniformly in n. Hence,

[ < 2(2n+l)r[ . _2__)\ e-(2n+1)II
C

3

so that 2im = 0. This completes the proof of equations (B4)

n
€3

and hence of (B5).
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